Compute Express Link™ (CXL™): A Coherent Interface for Ultra-High-Speed Transfers

Kurt Lender
CXL Consortium™ Marketing Work Group
Ecosystem Enabling Manager
Intel Corporation
Agenda

- Industry Need for CXL
- Overview of CXL
- CXL Features / Benefits
- CXL Use Cases
- Bringing CXL to the Industry / How to Contribute
- Summary
Why a New Class of Interconnect?

Extend PCIe for heterogeneous computing and server disaggregation usages

- Create shared memory pools with efficient access mechanisms
- Enhance movement of operands and results between accelerators and target devices
- Enable efficient resource sharing
- Significant latency reduction to enable disaggregated memory

CPU-attached Memory (OS Managed)

- CPU
- GPU
- FPGA
- AI

Accelerator-Attached Memory (Runtime managed cache)

- CPU
- PCIe DMA
- PCIe P2P
- NIC

UnCached Memory

- Writeback Memory
- PCIe DMA

Memory Load/Store
Overview of CXL
Introducing CXL

Processor Interconnect

- Open industry standard
- High-bandwidth, low-latency
- Coherent interface
- Leverages PCI Express®
- Targets → High-performance computational workloads - AI, ML, HPC, & Comms

CXL: a new class of interconnect for device connectivity
What is CXL?

• CXL is an alternate protocol that runs across the standard PCIe physical layer
• CXL uses a flexible processor port that can auto-negotiate to either the standard PCIe transaction protocol or the alternate CXL transaction protocols
• First generation CXL aligns to 32 Gbps PCIe 5.0
• CXL usages expected to be key driver for an aggressive timeline to PCIe 6.0
CXL Protocols

The CXL transaction layer is comprised of 3 dynamically multiplexed sub-protocols on a single link:

- **CXL.io** - Discovery, configuration, register access, interrupts, etc.
- **CXL.cache** - Device access to processor memory
- **CXL.memory** - Processor access to device attached memory

CXL - Dynamically Multiplexed IO, Cache and Memory

Diagram showing the interaction between Accelerator Logic, Host Processor, Coherence and Cache Logic, Core, Host Memory, Optional Accelerator Memory, PCIe Logic, and PCIe IO Device.
CXL Features / Benefits
CXL Stack – Designed for Low Latency

All 3 representative usages have latency critical elements:
- CXL.cache
- CXL.memory
- CXL.io

CXL cache and memory stack is optimized for latency:
- Separate transaction and link layer from IO
- Fixed message framing

CXL io flows pass through a stack that is largely identical a standard PCIe stack:
- Dynamic framing
- Transaction Layer Packet (TLP)/Data Link Layer Packet (DLLP) encapsulated in CXL flits
All 3 representative usages have latency critical elements:
 - CXL.cache
 - CXL.memory
 - CXL.io

CXL cache and memory stack is optimized for latency:
 - Separate transaction and link layer from IO
 - Fixed message framing

CXL io flows pass through a stack that is largely identical a standard PCIe stack:
 - Dynamic framing
 - Transaction Layer Packet (TLP)/Data Link Layer Packet (DLLP) encapsulated in CXL flits
CXL’s Protocol Asymmetry

CCI Model - Symmetric CCI Protocol

- Accelerator
 - Accelerator Engine
 - Accelerator Caching Agent
 - Accelerator Home Agent
 - Memory Agent

- CPU
 - Core
 - Core
 - Core
 - Core

- CCI
 - CCI Caching Agent
 - CCI Home Agent
 - Memory Agent

CXL Model - Asymmetric Protocol

- Accelerator
 - Accelerator Engine
 - Cache
 - CXL/CCI Caching Agent
 - CXL/CCI Home Agent
 - Memory Agent

- CPU
 - Core
 - Core
 - Core
 - Core

- CXL
 - CXL/CCI Caching Agent
 - CXL/CCI Home Agent
 - Memory Agent

CXL key advantages:
+ Avoid protocol interoperability hurdles/roadblocks
+ Enable devices across multiple segments (e.g. client / server)
+ Enable Memory buffer with no coherency burden
+ Simpler, processor independent device development
CXL’s Coherence Bias

Device Bias
- Critical access class for accelerators is “device engine to device memory”
- “Coherence Bias” allows a device engine to access its memory coherently without visiting the processor

Host Bias
- Both biases guaranteed correct/coherent
- Guarantee applies even when software bugs or speculative accesses unexpectedly access device memory in the “Device Bias” state.

Two driver managed modes or “Biases”
- HOST BIAS: pages being used by the host or shared between host and device
- DEVICE BIAS: pages being used exclusively by the device

Coherency Guaranteed
CXL Use Cases
Representative CXL Usages

Caching Devices / Accelerators
- **Usages:**
 - PGAS NIC
 - NIC atomics
- **Protocols:**
 - CXL.io
 - CXL.cache

Accelerators with Memory
- **Usages:**
 - GPU
 - Dense Computation
- **Protocols:**
 - CXL.io
 - CXL.cache
 - CXL.memory

Memory Buffers
- **Usages:**
 - Memory BW expansion
 - Memory capacity expansion
 - Storage Class Memory
- **Protocols:**
 - CXL.io
 - CXL.mem
CXL enables a more fluid and flexible memory model
Single, common, memory address space across processors and devices

- More efficient population and update of operands
- More efficient extraction of results
- Memory resource “borrowing”
- User/Kernel level data access and data movement
- Low latency to memory, host to device and device to host

Accelerator-Attached Memory (Runtime managed cache)

CPU-attached Memory (OS Managed)
Broad Industry support for CXL

Founding Promoters

CXL consortium - Currently 75 companies and growing

www.ComputeExpressLink.org
Call to Action: CXL Consortium – Get Involved

Contributors

Participate in Work Groups
- Protocol
- PHY
- System
- Software
- Compliance
- Marketing

Adopters

Join

Download Specification

Call to Action: Join and Contribute Now!

www.ComputeExpressLink.org
CXL Summary

• Coherent Interface
 → Leverages PCIe with 3 mix-and-match protocols

• Low Latency
 → .Cache and .Mem targeted at near CPU cache coherent latency

• Asymmetric Architecture
 → Eases burdens of cache coherent interface designs

• Open Industry Standard
 → With growing broad industry support

CXL has the right features and architecture to enable a broad, open eco-system for heterogeneous computing and server disaggregation
Thank You!
https://www.ComputeExpressLink.org